


Good testing is
tough!

The problem, here, is very fundamental. In order
to mechanically prove that a program corresponds
to some spec, the spec itself needs to be extremely
detailed. In fact the spec has to define everything
about the program, otherwise, nothing can be
proven automatically and mechanically. Now, if
the spec does define everything about how the
program is going to behave, then, lo and behold, it
contains all the information necessary to generate
the program! And now certain geeks go off to a
very dark place where they start thinking about
automatically compiling specs into programs, and
they start to think that they've just invented a way
to program computers without programming.

--Joel Spolsky



Sometimes unit
testing feels like
testing 100 trees
and hoping you
have a forest...



Unit testing is soo00
reductionist- but lots
of bugs happen in
Interactions - In
between the parts -




also, it's REALLY
hard to get coders to
search hard for
something they don't
want to see! Namely
bugs In their own
code...



(also it's easier to test
"pure" functions with
just input and output,
no side effects-
unfortunately, Ul
code is ALL ABOUT
the "side effects")




still, unit tests are
good to restructure
code so it's less
coupled



Conceptually | prefer
functional tests - but

they can take so long
to run!




So we use mocks! But
how get the data for
those?



- i u
\\aJA%(, VO M(/C(a
for ui stuff sometimes H\Q\/C\““ \ \’W)L\/(
7

we can grab it out of

. | \ e "
the chrome inspector! (U’WW‘U _

; Q,\MWL o‘ocswf
\(\AL (AW SSoV

i



other time we can
build it up from
scratch




which is better? one is

'more real’, the other
easier to understand




and what happens
over time? endpoint
data changes - that's
life!




and mocks tend to be
very fragile!
depending on the
signature to remain
the same is tough




so how can we
improve this process?

robots to make sure
the mocks line up with
the code?




